本发明涉及人工智能技术领域,提供一种多模态方面级情感分析方法。该方法包括:采集数据并对数据进行预处理,生成图片数据和文本数据对应的语法依赖树,并抽取数据的多模态特征;搭建方面词注意模块,并通过方面词注意模块获取与方面词相关的方面词语义信息,生成语义特征;根据多模态特征和语法依赖树构建第一卷积网络,并构建多模态权重关联矩阵,通过多模态权重关联矩阵对第一卷积网络迭代更新;引入语义特征对应的情感值,并使用第一卷积网络对带有情感值的语义特征进行训练,生成面向方面词的情感特征;根据语义特征和情感特征构建第二卷积网络,输入待识别数据并获取识别结果,该方法有效地提高了情感分析的准确度和效率。